国际眼科纵览 ›› 2025, Vol. 49 ›› Issue (6): 442-446.doi: 10. 3760/cma.j.cn115500-20250905-25605

• 综述 • 上一篇    下一篇

人工智能在糖尿病视网膜病变管理中的应用

李桃英  郑燕珊   

  1. 厦门大学附属厦门眼科中心 厦门市眼部疾病临床医学研究中心 厦门市眼部疾病重点实验室 福建省眼表与角膜病重点实验室 厦门市眼表与角膜疾病重点实验室 厦门大学附属厦门眼科中心转化医学研究所,厦门 361000
  • 收稿日期:2025-09-05 出版日期:2025-12-22 发布日期:2025-12-22
  • 通讯作者: 李桃英,Email: 875465848@qq.com

Applications of artificial intelligence in the management of diabetic retinopathy

Li Taoying, Zheng Yanshan   

  1. Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen Clinical Research Center for Eye Diseases, Xiamen Key Laboratory of Ophthalmology, Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen 361000, China
  • Received:2025-09-05 Online:2025-12-22 Published:2025-12-22
  • Contact: Li Taoying, Email: 875465848@qq.com

摘要: 近年来,人工智能(artificial intelligence,AI)技术在糖尿病视网膜病变(diabetic retinopathy,DR)管理中的应用取得显著进展。在疾病筛查方面,AI系统对DR的识别灵敏度可达95%~97%;在辅助诊疗方面,基于术前眼底影像的深度学习模型可精准预测术后4周视力恢复情况,而AI辅助靶向光凝技术则有效降低了术后出血与角膜水肿风险;在药物研发领域,AI算法能够高效筛选潜在有效药物,并实现疗效的量化与客观评估。然而,其临床应用仍面临算法泛化能力、模型可解释性、数据隐私与监管体系等多重挑战。未来,应致力于推动数据、算法与临床的深度融合,构建标准化评估与监管框架,以实现AI在DR管理中的可靠与可持续发展。

关键词: 人工智能, 糖尿病视网膜病变, 疾病筛查, 辅助诊疗

Abstract: In recent years, artificial intelligence (AI) has achieved significant advances in the management of diabetic retinopathy (DR). For screening, AI-based systems demonstrate a sensitivity of 95%-97% in detecting DR. In clinical assistance, deep learning models using preoperative fundus images can accurately predict visual acuity recovery at four weeks after surgery, while AI-assisted targeted photocoagulation has been shown to reduce risks of postoperative hemorrhage and corneal edema. In drug development, AI algorithms enable efficient screening of potential therapeutics and allow quantitative, objective assessment of treatment efficacy. However, clinical adoption still faces challenges such as limited model generalizability, insufficient interpretability, data privacy concerns, and the lack of robust regulatory frameworks. Moving forward, efforts should focus on deeper integration of data, algorithms, and clinical workflows, along with establishing standardized evaluation and regulatory systems, to foster reliable and sustainable implementation of AI in DR management.  


Key words: Artificial intelligence, Diabetic retinopathy, Disease screening, Clinical decision support